Видео-инструкции
Советы и секреты бывалых мастеров
Калькуляторы
Расчет строительных данных

Солнечная энергия как альтернативный источник энергии: виды и особенности использования гелиосистем

В последнее десятилетие солнечная энергия, как альтернативный источник энергии используется все чаще для отопления и обеспечения зданий горячей водой. Основная причина – стремление заменить традиционное топливо доступными, экологически чистыми и восполняемыми энергоресурсами.

Преобразование солнечной энергии в тепловую происходит в гелиосистемах – конструкция и принцип действия модуля определяет специфику его применения.

Целесообразность использования гелиосистемы

Гелиосистема – комплекс для преобразования солнечной лучевой энергии в тепловую, которая в последствии передается в теплообменник для нагрева теплоносителя системы отопления или водоснабжения.

Эффективность гелиотермической установки зависит от солнечной инсоляции – количество энергии, поступающей в течение одного светового дня на 1 кв.м поверхности, расположенной под углом 90° относительно направленности солнечных лучей. Измерительная величина показателя – кВт*ч/кв.м, значение параметра меняется в зависимости от сезона.

Средний уровень солнечной инсоляции для региона умеренно-континентального климата – 1000-1200 кВт*ч/кв.м (в год). Количество солнца – определяющий параметр для расчета производительности гелиосистемы.

Использование гелиосистемы
Использование альтернативного энергетического источника позволяет отапливать дом, получать горячую воду без традиционных энергозатрат – исключительно посредством солнечного излучения

Монтаж системы гелиотеплоснабжения – дорогое мероприятие. Чтобы капитальные расходы оправдали себя, необходим точный расчет системы и соблюдение технологии установки.

Пример. Усредненная величина солнечной инсоляции для Тулы в середине лета – 4,67 кВ/кв.м*день при условии установки панели системы под углом 50°. Производительность гелиоколлектора площадью 5 кв.м рассчитывается следующим образом: 4,67*4=18,68 кВт теплоэнергии за день. Этого объема хватит для подогрева 500 л воды с температуры от 17°С до 45°С.

Расчет гелиосистемы
Как показывает практика, при использовании гелиоустановки, собственники коттеджа в летний период могут полностью перейти с электрического или газового обогрева воды на солнечный метод

Говоря о целесообразности внедрения новых технологий, важно учесть технические особенности конкретного гелиоколлектора. Одни начинают работать при 80 Вт/кв.м солнечной энергии, а другим достаточно – 20 Вт/ кв.м.

Даже в южном климате, применение коллекторной системы исключительно для отопления не окупится. Если установка будет задействована исключительно зимой при дефиците солнца, то стоимость оборудования не покроется и за 15-20 лет.

Чтобы максимально эффективно использовать гелиокомплекс, его необходимо включить в систему горячего водоснабжения. Даже зимой гелиолектор позволит «урезать» счета за энергоносители на подогрев воды до 40-50%.

Гелиосистема зимой
По оценкам экспертов, при бытовом использовании гелиосистема окупается приблизительно за 5 лет. При росте цен на электроэнергию и газ срок окупаемости комплекса сократится

Кроме экономической выгоды «солнечный обогрев» имеет дополнительные плюсы:

  1. Экологичность. Сокращается выброс углекислого газа. За год 1 кв.м гелиоколлектора предотвращает поступление в атмосферу 350-730 кг отработки.
  2. Эстетичность. Пространство компактной ванны или кухни удается избавить от громоздких бойлеров или газовых колонок.
  3. Долговечность. Производители уверяют, что при соблюдении технологии монтажа, комплекс прослужит порядка 25-30 лет. Многие компании предоставляют гарантию до 3-х лет.

Аргументы против использования энергии солнца: ярко выраженная сезонность, зависимость от погоды и высокие первоначальные инвестиции.

Общее устройство и принцип действия

Рассмотрим вариант гелиосистемы с коллектором в качестве основного рабочего элемента системы. Внешний вид агрегата напоминает металлический ящик, лицевая сторона которого изготовлена из закаленного стекла. Внутри короба размещен рабочий орган – змеевик с абсорбером. Теплопоглощающий блок обеспечивает нагрев теплоносителя – циркулирующая жидкость, передает сгенерированное тепло в контур водоснабжения.

Составляющие гелиосистемы
Основные узлы гелиосистемы: 1 – коллекторное поле, 2 – воздухоотводчик, 3 – распределительная станция, 4 – резервуар сброса избыточного давления, 5 – контролер, 6 – бак-водонагреватель, 7,8 – тэн и теплообменник, 9 – клапан термосмесительный, 10 – расход горячей воды, 11 – поступление холодной воды, 12 – слив, Т1/Т2 – температурные датчики

Гелиоколлектор обязательно работает в тандеме с аккумулирующим баком. Поскольку теплоноситель нагревается до температуры 90-130°С, его нельзя подавать непосредственно в краны горячего водоснабжения или отопительные радиаторы. Теплоноситель поступает в теплообменник бойлера. Накопительный бак часто дополняется электрическим нагревателем.

Схема работы:

  1. Солнце нагревает поверхность коллектора.
  2. Тепловое излучение передается поглощающему элементу (абсорберу), в котором содержится рабочая жидкость.
  3. Циркулирующий по трубкам змеевика теплоноситель разогревается.
  4. Насосное оборудование, блок управления и контроля обеспечивают отвод теплоносителя по трубопроводу к змеевику накопительного бака.
  5. Осуществляется передача тепла воде в бойлере.
  6. Охлажденный теплоноситель поступает обратно в коллектор и цикл повторяется.

Нагретая вода от водонагревателя подается в контур отопления или к водозаборным точкам.

Схема работы гелиосистемы
При обустройстве отопительной системы или круглогодичного горячего водоснабжения, система комплектуется источником дополнительного подогрева (котел, электрический ТЭН). Это необходимое условие для поддержания заданной температуры

Разновидности солнечных коллекторов

Независимо от назначения, гелиосистема комплектуется плоским или сферическими трубчатым гелиоколлектором. Каждый из вариантов имеет ряд отличительных особенностей в плане технических характеристик и эффективности эксплуатации.

Вакуумный – для холодного и умеренного климата

Конструктивно вакуумный гелиоколлектор напоминает термос – узкие трубки с теплоносителем размещены в колбах большего диаметра. Между сосудами образуется вакуумная прослойка, отвечающая за теплоизоляцию (сохранность тепла – до 95%). Трубчатая форма наиболее оптимальна для удержания вакуума и «оккупации» солнечных лучей.

Трубчатый коллектор
Базовые элементы трубчатой гелиотермической установки: опорная рама, корпус теплообменника, вакуумные стеклянные трубки, обработанные высокоселективным покрытием для интенсивного «поглощения» солнечной энергии

Внутренняя (тепловая) трубка наполнена солевым раствором с низкой температурой кипения (24-25°С). При нагревании жидкость выпаривается – испарения поднимаются вверх колбы и нагревают теплоноситель, циркулирующий в корпусе коллектора. В процессе конденсации капли воды стекают в наконечник трубки и процесс повторяется.

Благодаря наличию вакуумной прослойки жидкость внутри тепловой колбы способна закипать и испаряться при минусовой уличной температуре (до -35°С).

Характеристики солнечных модулей зависят от таких критериев:

  • конструкция трубки – перьевая, коаксиальная;
  • устройство теплового канала – «Heat pipe», прямоточная циркуляция.

Перьевая колба — стеклянная трубка, в которой заключен пластинчатый абсорбер и тепловой канал. Вакуумная прослойка проходит через всю длину теплового канала.

Коаксиальная трубка – двойная колба с вакуумной «вставкой» между стенками двух резервуаров. Передача тепла осуществляется от внутренней поверхности трубки. Наконечник термотрубки оснащен индикатором вакуума.

Перьевая и коаксиальная трубка
Эффективность перьевых трубок (1) выше по сравнению с коаксиальными моделями (2). Однако первые дороже и сложнее в установке. Кроме того, в случае поломки, перьевую колбу придется менять целиком

Канал «Heat pipe» — наиболее распространенный вариант передачи тепла в гелиоколлекторах. Механизм действия основан на размещении в герметичных металлических трубках легкоиспаряющейся жидкости.

Канал «Heat pipe»
Популярность «Heat pipe» обусловлена доступной стоимостью, неприхотливостью обслуживания и ремонтопригодностью. В силу сложности теплообменного процесса максимальный уровень КПД – 65%

Прямоточный канал – через стеклянную колбу проходят параллельные, соединенные в U-образную дугу металлические трубки. Теплоноситель, протекая через канал, нагревается и подается к корпусу коллектора.

Типы конструкций коллектора
Варианты конструкций вакуумного гелиоколлектора: 1 – модификация с нагревательной центральной трубкой  «Heat pipe», 2 – гелиоустановка с прямоточной циркуляцией теплоносителя

Коаксиальные и перьевые трубки могут по-разному комбинироваться с тепловыми каналами.

Вариант 1. Коаксиальная колба с «Heat pipe» — наиболее популярное решение. В коллекторе происходит многократная передача тепла от стенок стеклянной трубки к внутренней колбе, а затем к теплоносителю. Степень оптического КПД достигает 65%.

Коаксиальная трубка «Heat pipe»
Схема устройства коаксиальной трубки «Heat pipe»: 1 –оболочка из стекла, 2 – селективное покрытие, 3 – металлическое оребрение, 4 – вакуум, 5 – тепловая колба с легкозакипающим веществом, 6 – внутренняя трубка из стекла

Вариант 2. Коаксиальная колба с прямоточной циркуляцией известна как, U-образный коллектор. Благодаря конструкции уменьшаются теплопотери – тепловая энергия от алюминия передается трубкам с циркулирующим теплоносителем. Наряду с высоким КПД (до 75%) модель имеет недостатки:

  • сложность монтажа – колбы являются единым целым с двухтрубным корпусом коллектора (mainfold) и устанавливаются целиком;
  • исключена замена одиночных трубок.

Кроме того, U-образный агрегат требователен к теплоносителю и дороже «Heat pipe» моделей.

 U-образный гелиоколлектор
Устройство U-образного гелиоколлектора: 1 – стеклянный «цилиндр», 2 – поглощающее покрытие, 3 – алюминиевый «чехол», 4 – колба с теплоносителем, 5 – вакуум, 6 – внутренняя трубка из стекла

Вариант 3. Перьевая трубка с принципом действия «Heat pipe». Отличительные особенности коллектора:

  • высокие оптические характеристики – КПД около 77%;
  • плоский абсорбер напрямую передает энергию тепла трубке с теплоносителем;
  • за счет использования одного слоя стекла снижено отражение солнечного излучения;

Возможна замена поврежденного элемента без слива теплоносителя из гелиосистемы.

Вариант 4. Перьевая колба прямоточного действия – наиболее эффективный инструмент использования солнечной энергии, как альтернативного источника энергии для нагрева воды или отопления жилья. Высокопроизводительный коллектор работает с КПД – 80%. Недостаток системы – трудность ремонта.

Гелиосистемы с перьевыми трубками
Схемы устройства перьевых солнечных коллекторов: 1 – гелиосистема с «Heat pipe» каналом, 2 – двухтрубный корпус гелиоколектора с прямоточным движением теплоносителя

Независимо от исполнения трубчатым коллекторам присущи следующие достоинства:

  • работоспособность при низкой температуре;
  • низкие тепловые потери;
  • длительность функционирования в течение суток;
  • способность разогревать теплоноситель до высоких температур;
  • невысокая парусность;
  • простота установки.

Основной недостаток вакуумных моделей – невозможность самоочищения от снежного покрова. Вакуумная прослойка не пропускает тепло наружу, поэтому слой снега не тает и перекрывает доступ солнца к коллекторному полю. Дополнительные минусы: высокая цена и необходимость соблюдения рабочего угла наклона колб не меньше 20°.

Водяной – оптимальный вариант для южных широт

Плоский (панельный) гелиоколлектор – прямоугольная алюминиевая пластина, закрытая сверху пластиковой или стеклянной крышкой. Внутри короба расположено абсорбционное поле, металлический змеевик и слой теплоизоляции. Площадь коллектора заполнена проточным трубопроводом, по которому движется теплоноситель.

Панельный гелиоколлектор
Базовые составляющие плоского гелиоколлектора: корпус, абсорбер, защитное покрытие, прослойка термоизоляции и крепежные детали.  При сборке используется матовое стекло с показателем пропускания спектрального диапазона 0,4-1,8 мкм

Теплопоглощение высокоселективного абсорбирующего покрытия достигает 90%. Проточный металлический трубопровод размещен между «поглотителем» и теплоизоляцией. Применяется две схемы укладки трубок: «арфа» и «меандр».

Трубчатый коллектор с жидким теплоносителем действует, как «тепличный» эффект – солнечные лучи проникают через стекло и прогревают трубопровод. Благодаря герметичности и теплоизоляции тепло удерживается внутри панели.

Прочность солнечного модуля во многом определяется материалом защитной крышки:

  • обычное стекло – самое дешевое и хрупкое покрытие;
  • закаленное стекло – высокая степень рассеивания света и повышенная прочность;
  • антирефлексное стекло – отличается максимальной поглощающей способностью (95%) за счет наличия слоя, элиминирующего отражение лучей солнца;
  • самоочищающееся (полярное) стекло с диоксид титаном – органические загрязнения выгорают на солнце, а остатки мусора смываются дождем.

Наиболее стойко переносит удары поликарбонатное стекло. Материал устанавливается в дорогих моделях.

Внешняя оболочка
Отражение солнечных лучей и поглощающая способность: 1 – антирефлексное покрытие, 2 – закаленное ударопрочное стекло. Оптимальная толщина защитной внешней оболочки – 4 мм

Эксплуатационно-функциональные особенности панельных гелиоустановок:

  • в системах принудительной циркуляции предусмотрена функция оттаивания, позволяющая быстро избавиться от снежного покрова на гелиополе;
  • призматическое стекло улавливает широкий диапазон лучей под разным углом – в летний период КПД установки достигает 78-80%;
  • коллектор не боится перегрева – при переизбытке тепловой энергии возможно принудительное охлаждение теплоносителя;
  • повышенная ударопрочность по сравнению с трубчатыми собратьями;
  • возможность монтажа под любым углом;
  • доступная ценовая политика.

Системы не лишены недостатков. В период дефицита солнечного излучения, по мере увеличения разницы температур, КПД плоского гелиоколлектора значительно падает из-за недостаточной теплоизоляции. Поэтому панельный модуль оправдывает себя в летнее время или в регионах с теплым климатом.

Гелиосистемы: особенности конструкции и эксплуатации

Многообразие гелиосистем можно классифицировать по таким параметрам: метод использования солнечной радиации, способ циркуляции теплоносителя, количество контуров и сезонность эксплуатации.

Активный и пассивный комплекс

В любой солнечной системе преобразования энергии предусмотрен гелиоприемник. Исходя из способа использования полученного тепла различают два типа гелиокомплексов: пассивные и активные.

Первая разновидность – система солнечного отопления, где теплопоглощающим элементом солнечного излучения выступают конструктивные элементы здания. В качестве гелиоприемной поверхности выступают кровля, стена-коллектор или окна.

Пассивная гелиосистема
Схема низкотемпературной пассивной гелиосистемы со стеной-коллектором: 1 – лучи солнца, 2 – полупрозрачный экран, 3 – воздушный барьер, 4 – разогретый воздух, 5- отработанные воздушные потоки, 6 – тепловое излучение от стены, 7 – теплопоглощающая поверхность стены-коллектора, 8 – декоративные жалюзи

В европейских странах пассивные технологии используются при возведении энергосберегающих зданий. Гелиоприемные поверхности декорируют под фальш-окна. За стеклянным покрытием размещается кирпичная зачерненная стена со светопроемами. В качестве теплоаккумуляторов выступают элементы сооружения – стены и перекрытия, изолированные полистиролом извне.

Активные системы подразумевают использование самостоятельных устройств, не относящихся к сооружению.

Активная гелиосистема
В эту категорию относятся выше рассмотренные комплексы с трубчатыми, плоскими коллекторами – гелиотермические установки, как правило, размещаются на крыше здания

Термосифонные и циркуляционные системы

Гелиотермическое оборудование с естественным движением теплоносителя по контуру коллектор-аккумулятор-коллектор осуществляется за счет конвекции – теплая жидкость с малой плотностью поднимается вверх, охлажденная – стекает вниз.

В термосифонных системах накопительный бак размещается выше коллектора, обеспечивая самопроизвольную циркуляцию теплоносителя.

Термсифонная гелиосистема
Схема работы свойственна одноконтурным сезонным системам. Термосифонный комплекс не рекомендуется использовать для коллекторов, площадью более 12 кв.м

Безнапорная гелиосистема имеет широкий перечень недостатков:

  • в облачные дни производительность комплекса падает – для движения теплоносителя требуется большая разница температур;
  • тепловые потери, обусловленные медленным передвижением жидкости;
  • риск перегрева бака ввиду неуправляемости нагревательного процесса;
  • нестабильность работы коллектора;
  • сложность размещения бака-аккумулятора – при монтаже на крыше возрастают теплопотери, ускоряются коррозийные процессы, появляется риск замерзания патрубков.

Плюсы «гравитационной» системы: простота конструкции и ценовая доступность.

Капитальные затраты на обустройство циркуляционной (принудительной) гелиосистемы значительно выше установки безнапорного комплекса. В контур «врезается» насос, обеспечивающий движения теплоносителя. Работа насосной станции управляется контролером.

Принудительная гелиосистема
Дополнительная тепловая мощность, вырабатываемая в принудительном комплексе, превышает мощность, потребляемую насосным оборудованием. Эффективность системы возрастет на треть

Такой способ циркуляции задействован в круглогодичных двухконтурных гелиотермических установках. Плюсы полнофункционального комплекса:

  • неограниченный выбор месторасположения аккумулирующего бака;
  • работоспособность вне сезона;
  • выбор оптимального режима нагрева;
  • безопасность – блокировка работы при перегреве.

Недостаток системы – зависимость от электроэнергии.

Техническое решение схем: одно – и двухконтурные

В одноконтурных установках циркулирует жидкость, которая впоследствии подается к водозаборным точкам. В зимний период воду с системы надо сливать, чтоб предупредить замерзание и растрескивание труб.

Особенности одноконтурных гелиотермических комплексов:

  • рекомендована «заправка» системы очищенной нежесткой водой – оседание солей на стенках труб приводит к засорению каналов и поломке коллектора;
  • коррозия из-за избытка воздуха в воде;
  • ограниченный срок службы – в пределах четырех-пяти лет;
  • высокий КПД летом.

В двухконтурных гелиокомплексах циркулирует специальный теплоноситель (незамерзающая жидкость с противовспенивающими и антикоррозийными добавками), отдающий тепло воде через теплообменник.

Одно- и двухконтурные гелиосистемы
Схемы устройства одноконтурной (1) и двухконтурной (2) гелиосистемы. Второй вариант отличается повышенной надежностью, возможностью работы зимой и длительностью эксплуатации (20-50 лет)

Нюансы эксплуатации двухконтурного модуля: незначительное снижение КПД (на 3-5% меньше чем в одноконтурной системе), необходимость полной замены теплоносителя каждые 7 лет.

Условия для работы и повышения эффективности

Расчет и монтаж гелиосистемы лучше доверить профессионалам. Соблюдение техники установки обеспечит работоспособность и получение заявленной производительности. Для улучшения эффективности и периода службы надо учесть некоторые нюансы.

Термостатический клапан. В традиционных системах теплоснабжения термостатический элемент редко устанавливается, так как за регулировку температуры отвечает теплогенератор. Однако при обустройстве гелиосистемы о защитном клапане забывать нельзя.

Размещение термостатического клапана
Нагрев бака до максимальной допустимой температуры повышает производительность коллектора и позволяет задействовать солнечное тепло даже при пасмурной погоде

Оптимальное размещение клапана – 60 см от нагревателя. При близком расположении «термостат» нагревается и блокирует подачу горячей воды.

Размещение бака-аккумулятора. Буферная емкость ГВС должна устанавливаться в доступном месте. При размещении в компактном помещении особое внимание уделяется высоте потолков.

Установка бака-аккумулятора
Минимальное свободное пространство над баком – 60 см. Этот зазор необходим для обслуживания аккумулятора и замены магниевого анода

Установка расширительного бака. Элемент компенсирует температурное расширение в период стагнации. Установка бака выше насосного оборудования спровоцирует перегрев мембраны и ее преждевременный износ.

Расширительный бак
Оптимальное место для расширительного бачка – под насосной группой. Температурное воздействие при таком монтаже значительно сокращается, и мембрана дольше сохраняет эластичность

Подсоединение гелиоконтура. При подключении труб рекомендуется организовать петлю. «Термопетля» сокращает теплопотери, препятствуя выходу разогретой жидкости.

Подсоединение гелиоконтура
Технически правильный вариант реализации «петли» гелиоконтура. Пренебрежение требованием становится причиной понижения температуры в баке-аккумуляторе на 1-2°С за ночь

Обратный клапан. Предупреждает «опрокидывание» циркуляции теплоносителя. Обратный клапан при недостатке солнечной активности не дает рассеиваться теплу, накопленному днем.

Популярные модели «солнечных» модулей

Спросом пользуются гелиосистемы отечественных и зарубежных компаний. Хорошую репутацию завоевали изделия производителей: НПО Машиностроения (Россия), Гелион (Россия), Ariston (Италия), Альтен (Украина), Viessman (Германия), Amcor (Израиль) и др.

Гелиосистема «Сокол». Плоский гелиоколлектор, оснащенный многослойным оптическим покрытием с магнитронным напылением. Минимальная способность излучения и высокий уровень поглощения обеспечивают КПД до 80%.

Эксплуатационные характеристики:

  • рабочая температура – до -21°С;
  • обратное излучение тепла – 3-5%;
  • верхний слой – закаленное стекло (4 мм).

Коллектор СВК-А (Альтен). Вакуумная гелиоустановка с площадью абсорбции 0,8-2,41 кв.м (зависимо от модели). Теплоноситель – пропиленгликоль, теплоизоляция медного теплообменника в 75 мм минимизирует теплопотери. Дополнительные параметры:

  • корпус – анодированный алюминий;
  • диаметр теплообменника – 38 мм;
  • изоляция – минвата с антигигроскопичной обработкой;
  • покрытие – боросиликатное стекло 3,3 мм;
  • КПД – 98%.

Vitosol 100-F – плоский гелиоколлектор горизонтального или вертикального монтажа. Медный абсорбер с арфообразным трубчатым змеевиком и гелиотитановым покрытием. Пропускание света – 81%.

Характеристики гелиосистем
Ориентировочный порядок цен на гелиосистемы: плоские гелиоколлекторы – от 400 у.е./кв.м, трубчатые солнечные коллекторы – 350 у.е./10 вакуумных колб. Полный комплект циркуляционной системы – от 2500 у.е.

Выводы и полезное видео по теме

Принцип действия гелиоколлекторов панельного и трубчатого типа, особенности одно- и двухконтурных систем:

Оценка работоспособности плоского коллектора при минусовой температуре:

Технология монтажа панельного гелиоколлектора на примере модели Buderus:

Солнечная энергия – восполняемый источник получения тепла. С учетом роста цен на традиционные энергоресурсы внедрение гелиосистем оправдывает капитальные инвестиции и окупается в ближайшие пять лет при соблюдении техники монтажа.

Комментарии посетителей
  1. Валерий

    Использовать солнечную энергию для освещения и обогрева дома — моя мечта. Поднакоплю денег и сделаю. Мой знакомый установил солнечные батареи на крыше. Весь процесс переоборудования обошелся в 25 тысяч долларов. Сейчас электроэнергии им хватает для семьи еще и продают государству избыток. Они подсчитали, что затраты окупятся за 6 лет, а потом будут получать доход. Перспективное вложение средств.

  2. Вячеслав

    Вокруг этой темы будет сломано еще немало копий. Неоднократно читал исследования со скептическим отношением к окупаемости подобных проектов. Видимо, тут все-таки все упирается в региональную привязку дома. Даже при потреблении электричества 1000кВт в месяц по 3 рубля, как-то 25к долларов в 5 лет не получается)
    А вот по отоплению, на мой взгляд интересно. Только возникает вопрос, сможет ли гелиоколлектор взять на себя полностью отопление и горячую воду в средних широтах? Тогда вопрос об окупаемости становится вторичен.

Добавить комментарий