Электрическая схема холодильника: устройство и принцип работы различных холодильников
Холодильник не включается, и вам нужно выяснить причину поломки? Выбираете новый агрегат и хотите понять отличие в принципе работы разных моделей? Поможет в этом электрическая схема холодильника, в которой отражено взаимодействие основных его узлов.
Понимая принцип работы, вы сможете избежать обмана мастеров или починить холодильник самостоятельно, а также снизить риск поломок и увеличить рабочий ресурс аппарата. В этой статье рассмотрим схемы устройств различных типов: однокамерных и 2 – 3-камерных, с системой NoFrost и без неё, двухкомпрессорных, с механическим и электронным управлением.
Содержание статьи:
Принципиальная схема устройства холодильника
Ещё 30 – 40 лет назад бытовые холодильники имели довольно простое строение: мотор-компрессор запускался и отключался 2 – 4 устройствами, о применении электронных плат управления и речи быть не могло.
Современные модели имеют множество дополнительных опций, но принцип работы в целом остается неизменным.
Терморегулятор – основной и единственный орган управления, которым пользователь может настроить работу старого холодильника, располагается обычно внутри холодильной камеры. Под силовым рычагом – крутящейся ручкой – скрыта пружина сильфона. Она сжимается, когда в камере холодно, тем самым размыкая электрическую цепь и отключая компрессор.
Как только температура поднимается, пружина распрямляется и вновь замыкает цепь. Ручка с указателями силы заморозки холодильника регулирует допустимый диапазон температур: максимальную, при которой компрессор запускается, и минимальную, при которой охлаждение приостанавливается.
Тепловое реле выполняет защитную функцию: контролирует температуру двигателя, поэтому расположено непосредственно возле него, часто совмещено с пусковым реле. При превышении допустимых значений, а это может быть 80 градусов и более, биметаллическая пластина в реле изгибается и прерывает контакт.
Мотор не получит питания до тех пор, пока не остынет. Это защищает как от поломки компрессора вследствие перегрева, так и от пожара в доме.
Мотор-компрессор имеет 2 обмотки: рабочую и стартовую. Напряжение на рабочую обмотку подается напрямую после всех предыдущих реле, но этого недостаточно для запуска. Когда напряжение на рабочей обмотке повышается, срабатывает пусковое реле. Оно дает импульс на стартовую обмотку, и ротор начинает вращаться. В результате поршень сжимает и проталкивает по системе фреон.
В целом цикл работы холодильника можно описать следующим образом:
- Включение в сеть. Температура в камере высокая, контакты терморегулятора замкнуты, мотор запускается.
- Фреон в компрессоре сжимается, его температура повышается.
- Хладагент выталкивается в змеевик конденсатора, расположенный за спиной или в поддоне холодильника. Там он остывает, отдает тепло воздуху и переходит в жидкое состояние.
- Через осушитель фреон попадает в тонкую капиллярную трубку.
- Попадая в испаритель, расположенный внутри камеры холодильника, холодильный агент резко расширяется благодаря увеличению диаметра трубок и переходу в газообразное состояние. Полученный газ имеет температуру ниже -15 градусов, поглощает тепло из камер холодильника.
- Немного нагретый фреон поступает в компрессор, и всё начинается заново.
- Через некоторое время температура внутри холодильника достигает заданных значений, контакты терморегулятора размыкаются, мотор и движение фреона останавливаются.
- Под воздействием температуры в помещении, от новых тёплых продуктов в камере и открывания двери, температура в камере повышается, терморегулятор замыкает контакты и начинается новый цикл охлаждения.
Эта схема в точности описывает работу старых однокамерных холодильников, в которых один испаритель.
Как правило, испаритель является корпусом морозилки в верхней части агрегата, не изолированный от холодильной камеры. Отличия в устройстве других моделей рассмотрим далее.
Двухкамерные и двухкомпрессорные модели
В большинстве доступных двухкамерных моделей общий фреоновый контур: после прохождения по испарителю морозильной камеры, хладагент направляется в основную камеру, а лишь оттуда – в компрессор.
Мотор выключается по сигналу термореле, расположенному в основной камере, общая схема электрики не отличается от однокамерных моделей.
В холодильниках No Frost эта система часто реализована одним общим испарителем, расположенным в перегородке между камерами. Разница температур регулируется турбинами и количеством воздуховодов, подробнее о таких моделях и их электрике поговорим далее.
Двухкомпрессорные модели позволяют независимо управлять температурой в каждой камере. По сути, это два отдельных, независимых устройства в одном корпусе – соответственно, и электрическая схема полностью продублирована: отдельный терморегулятор для каждой камеры, отдельное пускозащитное реле для каждого компрессора.
Независимая регулировка температуры в каждой камере возможна и с одним компрессором, при двухконтурной системе. Она может быть реализована различными способами: с преимуществом заморозки или абсолютно независимыми контурами.
В первом случае термостат холодильной камеры при достижении заданной температуры перекрывает клапан, и фреон начинает циркуляцию по малому кругу – только через морозилку. Компрессор останавливается при размыкании контактов термостата морозильной камеры.
Во втором варианте фреон имеет возможность циркуляции по любому одному из контуров или по обоим сразу, а регулируется этот процесс открытием и закрытием определенных клапанов по сигналу электронной платы управления.
Трехкамерные холодильники и зона нулевой температуры
Свежие мясо, птица и рыба недолго хранятся в основном отсеке холодильника, а при заморозке теряют часть полезных свойство, вкуса и аромата. Для них часто предусмотрен отдельный ящик с температурой, близкой к нулю, либо даже отдельная камера.
Наиболее точно поддерживается температура в зоне свежести при таких условиях:
- отдельная камера со своим испарителем и термистором, система циркуляции фреона двух– или трехконтурная. Вариант довольно дорогой и громоздкий, но и объёмы камеры значительные;
- изолированный отсек в основной камере холодильника с системой No Frost, снабженный дополнительными настраиваемыми вручную воздуховодами от испарителя и термометром. Точность температуры зависит от своевременности ручной настройки;
- аналогичное предыдущему исполнение, в котором воздушные заслонки управляются электронным блоком.
Альтернативный вариант – охлаждение от “плачущего” испарителя основной камеры.
Как видим, нулевая зона может быть реализована в холодильниках с различной схемой электрики, для обеспечения её работы могут быть дополнительно включены терморегулятор или термистор, а также расширена плата электронного управления.
Система No Frost и саморазморозка
Описанные выше холодильники имеют капельную систему разморозки. Это значит, что холодильной камере установлен “плачущий” испаритель: в период простоя компрессора иней на нём тает естественным образом, потому как температура в камере плюсовая.
Образовавшаяся вода стекает по специальным желобам через трубочку в контейнер, расположенный над мотором или возле него. Позже работающий мотор сильно нагревается, и вода испаряется. Морозилка при такой системе самостоятельно не оттаивает никогда, к тому же иней образуется не только на стенках камеры, но и на продуктах.
Холодильники No Frost не нуждаются в разморозке, инея в их камерах, даже в морозилке, вы не увидите. Характерная особенность таких моделей – наличие вентилятора, который распределяет холодный воздух от испарителя по камерам.
Сам охлаждающий змеевик в таких моделях выглядит не как привычная сплошная металлическая пластина, а как автомобильный радиатор или змеевик конденсатора сзади старых холодильников.
В общей схеме работы холодильника новые элементы ведут себя следующим образом:
- вентилятор или турбина запускается вместе с компрессором и равномерно распределяет холодный воздух по камерам;
- когда термореле размыкает контакты, питающие двигатель в связи с достижением заданной температуры, одновременно отключается и вентилятор;
- раз в 8 — 16 часов термореле включает нагревательный элемент. Это электрический мат или провод, нагревающий змеевик испарителя для удаления с него инея. Теплый воздух не попадает в камеры холодильника, поскольку испаритель скрыт, а вентилятор отключен;
- когда весь иней оттаял, переключатель компенсации температуры отключает подогрев;
- дополнительно термостат может управлять заслонкой, регулирующей подачу холодного воздуха в основную камеру по каналам.
Разморозка таких холодильников похожа на “плачущий” испаритель лишь в одном: образовавшаяся вода также стекает по каналам в емкость около мотора.
Описанная выше схема – наиболее примитивная. Большинство современных моделей управляются централизованно, с электронной платы.
Основной недостаток холодильников No Frost – пересыхание продуктов из-за постоянной циркуляции воздуха. Всё приходится хранить в контейнерах с плотными крышками или заворачивать в плёнку.
Оригинальное решение проблемы предлагает Electrolux в системе Frost Free. В этих агрегатах морозилка работает по системе No Frost, а в камере с плюсовой температурой установлен классический, “плачущий” испаритель. Электрическая схема в целом идентична стандартным системам “без инея”.
Умные холодильники с электронным управлением
Классические терморегуляторы, с механической поворотной ручкой и сильфоном внутри, в современных холодильниках встречаются всё реже. Они уступают место электронным платам, способным управлять постоянно увеличивающимся разнообразием режимов работы и дополнительных опций холодильника.
Функцию определения температуры вместо сильфона выполняют датчики – термисторы. Они значительно более точные и компактные, часто устанавливаются не только в каждой камере холодильника, но и на корпусе испарителя, в генераторе льда и снаружи холодильника.
Управляющая электроника многих холодильников выполнена на двух платах. Одну можно назвать пользовательской: она служит для ввода настроек и отображения текущего состояния. Вторая – системная, через микропроцессор управляет всеми устройствами холодильника для реализации заданной программы.
Отдельный электронный модуль позволяет использовать в холодильниках инверторный двигатель.
Такие моторы не чередуют циклы работы на максимальной мощности и простоя, как обычные, а лишь меняют количество оборотов в минуту, в зависимости от необходимой мощности. В результате температура в камерах холодильника постоянная, потребление электроэнергии снижается, а рабочий ресурс компрессора – повышается.
Использование электронных плат управления невероятно расширяет функциональные возможности холодильников.
Современные модели могут быть оснащены:
- панелью управления с дисплеем или без него, с возможностью выбора и установки режима работы;
- множеством датчиков температуры NTC;
- вентиляторами FAN;
- дополнительными электромоторами М – например, для измельчения льдинок в генераторе льда;
- нагревателями HEATER для систем оттайки, домашнего бара и пр.;
- электромагнитными клапанами VALVE – например, в кулере;
- выключателями S/W для контроля закрытия дверцы, включения дополнительных устройств;
- Wi-Fi адаптером и возможностью дистанционного управления.
Электрические схемы подобных устройств также поддаются ремонту: даже в самой сложной системе нередко причиной неисправности становится вышедший из строя датчик температуры или подобная мелочь.
Если же холодильник “глючит” и отказывается корректно выполнять заданную программу, либо вообще не включается, вероятнее всего проблема касается платы или компрессора, лучше доверить ремонт специалисту.
Выводы и полезное видео по теме
О том, как устроен и работает компрессор бытового холодильника, наглядно и подробно рассказывают в этом видео:
А здесь на стенде собирают и подключают все элементы электрической цепи холодильника No Frost:
Всё разнообразие современных бытовых холодильников сводится к одной принципиальной электрической схеме, усовершенствованной и дополненной различными компонентам. Как бы ни отличался Indesit последней модели от старенького Минска, производят холод они по одинаковому принципу.
Электрические цепи бюджетных и старых холодильников вполне поддаются домашнему ремонту по типичной схеме, электронные же платы управления различаются для каждой серии. Но даже они имеют схожее общее строение.
А какому холодильнику отдали вы свое предпочтение? Смогли узнать что-то новое, интересное и полезное из этой статьи? Делитесь своим мнением, опытом и знаниями в комментариях ниже.
Уже не первый раз сталкиваюсь с этой умной современной техникой напичканой электронными платами и микросхемами: микроволновка, печка, холодильник, автомобиль( сним больше возни). Много мороки с ремонтом. Механика куда проще, даже ремонт можно выполнить не имея технического образования или профессиональных навыков.